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Note 

A Numerical Study of the Cusp Catastrophe 
for Bknard Convection in Tilted Cavities 

In the Benard problem a fluid is confined between horizontal surfaces with the 
lower surface maintained at a higher temperature than the upper one. The conse- 
quences are well understood; when the Rayleigh number Ra is below a certain value 
then there is no flow and heat is transferred by conduction alone. At the critical value 
there is a bifurcation from the conducting solution which, because of the vertical 
symmetry, is in the form of a pitchfork [ 11. 

The pitchfork bifurcation in one parameter, Ra in this case, is unstable in the sense 
that small perturbations to the boundary conditions or equations, which break the 
symmetry, change the qualitative picture. By introducing a second, symmetry- 
breaking parameter into the problem, the pitchfork is unfolded to a cusp catastrophe, 
which is structurally stable [2]. The original pitchfork is just a section through the 
cusp. 

From these considerations, we deduce that, when the surfaces in the Benard 
problem are tilted at 13 degrees to the horizontal, then the pitchfork is unfolded to a 
cusp catastrophe in the parameters Ra and 6’. This is shown in Fig. 1, from which it 
is clear that the section at 8 = 0 through the cusp is the usual Benard bifurcation 
diagram. For non-zero 8, a typical section gives the one-sided bifurcation shown in 
Fig. 2. In this case the flow develops smoothly from zero Rayleigh number to the 
lower branch. There are however two further solutions above a critical value of Ra 
which cannot be reached smoothly. The lower of these is unstable, but the upper 
branch is stable and is in principle observable. 

In this letter, we predict the critical Rayleigh number for the appearance of these 
anomalous solutions as a function of angle of tilt 8. For a fixed tilt of lo we also 
compute the anomalous solution for various Rayleigh numbers above the critical 
value. 

We consider the particular case of confined Benard convection in a 2-dimensional 
cavity with rigid sidewalls and aspect ratio of 1. The vertical walls are insulated. The 
equations for natural convection are solved in the Boussinesq approximation 
throughout. Three distinct methods are used to map the solution surface represented 
in Fig. 1. 

(i) For fixed values of Ra and 8, the set of equations for natural convection, 
which we denote by 

dx, Ra, 6’) = 0, (1) 

are discretised in a finite-element approximation and linearised by the 
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FIG 1. The cusp catastrophe for BCnard convection in a tilted cavity. 

Newton-Raphson method [3]. In the above equation x denotes the solution vector, 9 
is the clockwise inclination of the heated surfaces to the horizontal, and the Rayleigh 
number Ra is based on the imposed temperature difference and the cavity height. 

Euler-Newton continuation in either Ra or B is then used to follow lines of 
constant B or Ra on the surface of Fig. 1. 

(ii) As we have already discussed, the vertical symmetry ensures that the cusp 
is located at 0 = 0 and is a pitchfork bifurcation with respect to the parameter Ra. 
This means that we can locate the cusp using an algorithm for finding bifurcation 
points due to Moore 141, which involves the solution of the equations: 

g(x, Ra, 0) + Ay/ = 0, 

$‘g,(x, Ra, 0) = 0, 

vTgRa(x, Ra, 0) = 0, 
Ifly = 1. 

(2) 

Ra 

FIG. 2. State diagram for cavity tilted by 1“. The component of velocity parallel to the top of the 
cavity at (0.5, 0.9) is plotted against the Rayleigb number. 
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In these equations w is the left eigenvector of g,, a subscript denotes differentiation 
with respect to that subscript, and A is a parameter introduced for numerical 
convenience, since otherwise the system is overdetermined. In the present case 
symmetry ensures that A = 0 to machine accuracy. These equations were also 
discretised in the finite-element approximation and solved by Newton’s method. The 
solution of these equations was used as the initial guess for the calculation of the 
limit point at the first non-zero value of tilt considered. 

(iii) The limit (one-sided bifurcation) points were found from the solution of 
the extended set of equations proposed by Moore and Spence 151. 

g(x, Ra, 0) = 0, 

g,(x, Ra, 8 4 = 0, 

w = 1, 

(3) 

where $ is the right eigenvector of g, and I is a linear functional which is introduced 
to normalise 4. For a given value of one parameter, 19 say, we again discretise these 
equations in the finite-element approximation and solve them by Newton’s method to 
give the value of the other parameter, Ra, at which there is a limit point. We then use 
Euler-Newton continuation in the first parameter to obtain the variation of the limit 
points with 19, thus tracing the folds in the solution surface represented in Fig. 1. This 
also gives the solution x at the limit point, so that it is straightforward to step onto 
either the upper or the lower anomalous solution by solving Eq. (1). 

Figure 2 shows a state diagram generated by the above techniques, for a lo angle 
of tilt. The circles are computed values and have been joined smoothly by a spline 
interpolation. The labels f 1 are the predicted values of the Leray-Schauder index 
161, and these are in agreement with the expected stability properties, a negative sign 
indicating unstable steady flow 161. In the present case, the branches with positive 
index are stable. The anomalous solution on the upper branch is similar to the normal 
solution but with opposite sense of rotation. The anomalous streamlines and 
isotherms at a Rayleigh number of 5,000 are shown in Fig. 3. 

Cold 

•l 0 0 

Hot 

Ial. 

T=O 

Es4 

s 

T=l 

Ibl 

FIG. 3. Streamlines (a) and isotherms (b) for the anomalous solution at a Rayleigh number of 5,000 
and 1” tilt. 
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FIG. 4. Locus of limit points as a function of Ra and 6’. 

Figure 4 shows the locus of limit points as a function of Ra and 13. This is the 
projection of the folds of Fig. 1 onto the Ra-8 plane and shows the critical Rayleigh 
number for the appearance of the anomalous solution at any tilt. It is of course 
symmetric about 8 = 0, and the cusp is evident over a rather narrow range of angles, 
of f lo. However, the striking feature of Fig. 4 is that the curve is asymptotic to the 
lines 8 = *22.0”, so that the anomalous solutions exist only for angles of tilt less than 
this limiting value. 
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